Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum.

نویسندگان

  • L J Wu
  • A Feucht
  • J Errington
چکیده

The spoIIE gene is essential for the compartment-specific activation of transcription factor sigmaF during sporulation in Bacillus subtilis. SpoIIE is a membrane protein that is targeted to the potential sites of asymmetric septation near each pole of the sporulating cell. The cytoplasmic carboxy-terminal domain of SpoIIE contains a serine phosphatase that triggers the release of sigmaF in the prespore compartment after septation. To understand how septum-located SpoIIE is activated selectively in the prespore, we examined the distribution of a SpoIIE-GFP fusion protein. We show that the polar bands of SpoIIE protein actually form sequentially and that the most prominent band develops at the pole where the prespore forms. We also show that the protein is sequestered to the prespore side of the asymmetric septum. Sequestration of SpoIIE into the prespore compartment provides a mechanism that could explain the cell specificity of sigmaF activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Establishment of prespore-specific gene expression in Bacillus subtilis: localization of SpoIIE phosphatase and initiation of compartment-specific proteolysis.

Immunofluorescence microscopy was used to study the establishment of compartment-specific transcription during sporulation in Bacillus subtilis. Analysis of the distribution of the anti-anti-sigma factor, SpoIIAA, in a variety of mutant backgrounds supports a model in which the SpoIIE phosphatase, which activates SpoIIAA by dephosphorylation, is sequestered onto the prespore face of the asymmet...

متن کامل

Evaluation of the kinetic properties of the sporulation protein SpoIIE of Bacillus subtilis by inclusion in a model membrane.

Starvation induces Bacillus subtilis to initiate a developmental process (sporulation) that includes asymmetric cell division to form the prespore and the mother cell. The integral membrane protein SpoIIE is essential for the prespore-specific activation of the transcription factor sigmaF, and it also has a morphogenic activity required for asymmetric division. An increase in the local concentr...

متن کامل

Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis.

During sporulation in Bacillus subtilis an asymmetric cell division gives rise to unequal progeny called the prepore and the mother cell. Gene expression in the prespore is initiated by cell-specific activation of the transcription factor sigma(F). Three proteins participate in the regulation of sigma(F) activity. The first, SpoIIAB, is an inhibitor of sigma(F), that is, an anti-sigma factor. S...

متن کامل

Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE.

SpoIIE is a bifunctional protein with two critical roles in the establishment of cell fate in Bacillus subtilis. First, SpoIIE is needed for the normal formation of the asymmetrically positioned septum that forms early in sporulation and separates the mother cell from the prespore compartment. Secondly, SpoIIE is essential for the activation of the first compartment-specific transcription facto...

متن کامل

Analysis of the role of prespore gene expression in the compartmentalization of mother cell-specific gene expression during sporulation of Bacillus subtilis.

A hallmark of sporulation of Bacillus subtilis is the formation of two distinct cells by an asymmetric division. The development programs in these two cells involve the compartmentalized activities of sigma E in the larger mother cell and of sigma F in the smaller prespore. Activation of sigma E requires expression of the sigma F-directed gene spoIIR. By immunofluorescence microscopy of a strai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 12 9  شماره 

صفحات  -

تاریخ انتشار 1998